BiYAcc: Roll Your Parser and Reflective Printer into One

Zirun Zhu''?, Yongzhe Zhang! ? Hsiang-Shang Ko?, Pedro Martins®, Joao Saraiva®*, Zhenjiang Hu':?
' SOKENDAI (The Graduate University for Advanced Studies), Japan

2 National Institute of Informatics, Japan

> University of California, Irvine, U.S.A. * University of Minho, Portugal

BiYACC ARCHITECTURE FEATURES

Actions

Concrete

Expr -> Expr '+
Expr '-'
Term; exp

Term '*x' Factor
Term '/' Factor
Factor; exp

Factor -> Int
'- ' Factor Num 1
| '('" Expr ')'; exp

Concrete
Syntax

Actions

/* a simple
arithmetic

expression */
5 % (4 - 2)

Lexer Parser

~ Source

Arith +> Expr

Add x y +> (x +> Expr) '+' (y +> Term);
Sub x y +> (x +> Expr) '-' (y +> Term);
+> (exp +> Term) ;

Arith +> Term

Mul x y +> (x +> Term) '*' (y +> Factor);
Div x y +> (x +> Term) '/' (y +> Factor);
+> (exp +> Factor);

Arith +> Factor

Sub (Num #0) y +> '-' (y +> Factor);

Priﬁting Abstract

I—J—I

BiYacc Compiler

J—Jﬁ

| | ‘ | Program

Tokens--1-- CST«—AST

Code : \

Bidirectional transformations: the
forward and backward transformations
between source code s and abstract syn-
tax tree t are well-behaved.

print s (parse s) = S

parse (print st) =t

Updating actions: unlike conventional
printers, BIYACC does not print a new
program from scratch, but updates the
original program text with the AST, pos-
sibly preserving some syntactic struc-
tures and layout information.

+> (i +> Int);
+> ' (' (exp +> Expr) ')';

Abstract

data Arith =

Add Arith Arith

Sub Arith Arith

Mul Arith Arith

Div Arith Arith

Num Int
deriveBiGULGeneric ''Arith

Syntax Pattern matching: BIYACC's sup-

port of simultaneous pattern matching
on both the CST and AST lets the user
write flexible printing actions to synchro-
nize abstract and concrete representa-
tions, and is especially useful for han-
dling syntactic sugar.

BiGUL

Adaptation: printing actions only need
to be written for matching ASTs and
CSTs. It the AST and CST are mis-
matched, BIYACC automatically chooses
the first printing action that matches the
AST, and prints a CST from scratch like

A conventional printer.

APPLICATIONS

Reflecting optimizations: a variety of
optimizations on ASTs (such as constant
propagation and dead code elimination)
can be correctly reflected to the source
code.

Pombrio and Krishnamurthi’s re-
sugaring: reduction sequences on ASTS
can be reflected back to the surtace lan-
ouage.

Simple language extensions: some
simple language extensions (such as ‘for-
each’ loops in Java 5) can be imple-
mented by desugaring into existing lan-
guage constructs (such as ‘for’ loops).

Refactoring: semantics-preserving
code reorganization (such as variable
renaming and method extraction) can
be performed on ASTs and an equiva-
lent reorganizing transtormation can be
derived for the source code.

PRESERVATION OF SYNTACTIC SUGAR

Being a reflective printer, BIYACC takes the source code as an input, and prints the
updated abstract syntax tree (AST) according to the original layout. Syntactic sugar
can be directly handled.

-- AST data type

data Tiger = TInt Int
TName Name

TAssign Tiger Tiger
TIf Tiger Tiger Tiger

Part of Tiger’s BIYACC
Language Specification

‘or?

-- syntactic sugar for ‘and’ and
Tiger +> InfixExp

TIf el e2 (TInt #0) +> (el +> Exp) '&' (e2 +> Exp);
TIf el (TInt #1) e2 +> (el +> Exp) '|l' (e2 +> Exp);
Tiger +> IfThenElse

TIf i el e2 +> 'if' (i +> Exp) 'then' (el +> Exp) 'else' (e2 +> Exp);

The following figure shows the putback transformation. By giving different source
program, the same AST may be printed differently.

Updated AST

Source Code Source Code

X :=a & c TAssign x := if a then b else c
TName x TIf
X :=a &b , . x := if a then b else O
p’f”l/ﬂt / ‘ \ p?“’mt

TName @ TName b TInt O

1| Zirun Zhu, Hsiang-Shang Ko, Pedro Martins, Joao Saraiva, and Zhenjiang Hu.
BIYACC: Roll your parser and reflective printer into one. BX’15.
http://www.prg.nii.ac.jp/

12| Hsiang-Shang Ko, Tao Zan, and Zhenjiang Hu. BIGUL: A formally verified core . .
_ language for putback-based bidirectional programming. PEPM’16. \proJeCt/ biyacc.html

REFERENCES DEMO WEBSITE
L) Er L

examples is available at

