
BiYacc: Roll Your Parser and Reflective Printer into One
Zirun Zhu1, 2, Yongzhe Zhang1, 2, Hsiang-Shang Ko2, Pedro Martins3, João Saraiva4, Zhenjiang Hu1, 2
1 SOKENDAI (The Graduate University for Advanced Studies), Japan
2 National Institute of Informatics, Japan 3 University of California, Irvine, U.S.A. 4 University of Minho, Portugal

BiYacc Architecture

Source
Code Tokens CST AST

Lexer Parser BiGUL
Program

BiYacc Compiler

Printer

Concrete
Syntax

Printing
Actions

Abstract
Syntax

Abstract
data Arith =

Add Arith Arith
| Sub Arith Arith
| Mul Arith Arith
| Div Arith Arith
| Num Int

deriveBiGULGeneric ''Arith

Concrete

Expr -> Expr '+' Term
| Expr '-' Term
| Term;

Term -> Term '*' Factor
| Term '/' Factor
| Factor;

Factor -> Int
| '-' Factor
| '(' Expr ')';

Actions
Arith +> Expr
Add x y +> (x +> Expr) '+' (y +> Term);
Sub x y +> (x +> Expr) '-' (y +> Term);
exp +> (exp +> Term);
Arith +> Term
Mul x y +> (x +> Term) '*' (y +> Factor);
Div x y +> (x +> Term) '/' (y +> Factor);
exp +> (exp +> Factor);
Arith +> Factor
Sub (Num #0) y +> '-' (y +> Factor);
Num i +> (i +> Int);
exp +> '(' (exp +> Expr) ')';

/* a simple
arithmetic
expression */

5 * (4 - 2)

Internal data types are generated by BiYacc
Layout information is preserved

(Mul
(Num 5)
(Sub
(Num 4)
(Num 2)

)
)

Features
Bidirectional transformations : the
forward and backward transformations
between source code s and abstract syn-
tax tree t are well-behaved.

print s (parse s) = s

parse (print s t) = t

Updating actions : unlike conventional
printers, BiYacc does not print a new
program from scratch, but updates the
original program text with the AST, pos-
sibly preserving some syntactic struc-
tures and layout information.

Pattern matching : BiYacc’s sup-
port of simultaneous pattern matching
on both the CST and AST lets the user
write flexible printing actions to synchro-
nize abstract and concrete representa-
tions, and is especially useful for han-
dling syntactic sugar.

Adaptation : printing actions only need
to be written for matching ASTs and
CSTs. If the AST and CST are mis-
matched, BiYacc automatically chooses
the first printing action that matches the
AST, and prints a CST from scratch like
a conventional printer.

Preservation of Syntactic Sugar
Being a reflective printer, BiYacc takes the source code as an input, and prints the
updated abstract syntax tree (AST) according to the original layout. Syntactic sugar
can be directly handled.

–– AST data type
data Tiger = TInt Int

| TName Name
| TAssign Tiger Tiger
| TIf Tiger Tiger Tiger
| ...

–– syntactic sugar for ‘and’ and ‘or’
Tiger +> InfixExp
TIf e1 e2 (TInt #0) +> (e1 +> Exp) '&' (e2 +> Exp);
TIf e1 (TInt #1) e2 +> (e1 +> Exp) '|' (e2 +> Exp);
Tiger +> IfThenElse
TIf i e1 e2 +> 'if' (i +> Exp) 'then' (e1 +> Exp) 'else' (e2 +> Exp);

Part of Tiger’s BiYacc
Language Specification

The following figure shows the putback transformation. By giving different source
program, the same AST may be printed differently.

Updated AST

TAssign

TName x TIf

TName a TName b TInt 0
print

Source Code

x := a & c

x := a & b
print

Source Code

x := if a then b else c

x := if a then b else 0

Applications
Reflecting optimizations : a variety of
optimizations on ASTs (such as constant
propagation and dead code elimination)
can be correctly reflected to the source
code.

Pombrio and Krishnamurthi’s re-
sugaring : reduction sequences on ASTs
can be reflected back to the surface lan-
guage.

Simple language extensions : some
simple language extensions (such as ‘for-
each’ loops in Java 5) can be imple-
mented by desugaring into existing lan-
guage constructs (such as ‘for’ loops).

Refactoring : semantics-preserving
code reorganization (such as variable
renaming and method extraction) can
be performed on ASTs and an equiva-
lent reorganizing transformation can be
derived for the source code.

References
[1] Zirun Zhu, Hsiang-Shang Ko, Pedro Martins, João Saraiva, and Zhenjiang Hu.

BiYacc: Roll your parser and reflective printer into one. BX’15.
[2] Hsiang-Shang Ko, Tao Zan, and Zhenjiang Hu. BiGUL: A formally verified core

language for putback-based bidirectional programming. PEPM’16.

Demo Website
An interactive website with
examples is available at
http://www.prg.nii.ac.jp/
project/biyacc.html


